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Let the albedo of single scattering A in an isotropically scattering homo-

geneous optically semi-infinite atmosphere be complex
A= A+ io. (1)

We assume that in this case the source tfunction B for a large range of radia-
tive transter problems in given type of atmospheres can still be described by

the well-known Fredholm integral equation
1 00
B(r) = 5)\/ Ey(t — 7)B(t)dt + By(7), (2)
0

where 7 1s the optical depth and the exponential integral 1s expressed in the
form

1
En(x) = [ exp(—|a|/s)s"ds (3)



B(7) = By(1) + fUT O(t)Bo(t)dt. (4)

According to Sobolev [17] the solution of Eq.(2) in the case of the Milne

problem 1s

B(7) =exp (kT) +f exp (k(7 —1t)D(t)dt. (5)
0
where s 1s the smallest positive zero of the characteristic equation in the real
domain
A, 1+~r
In = 1. (6)
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Sobolev has shown that the function ¢ satisfies the following Fredholm
integral equation

O(T) = %]:C Ey (|t — 7])®(t)dt + %El(’r). (7)

This 1s one of the most important equations i the radiative transfer since
all the relevant functions of transfer can be expressed through the resolvent
function.

We try to solve Eq.(7) by approximating the kernel of it by a sum of exponents

N
Ey(r) = 3 wnexp(—7/up)u; " (®)
n=1



N
O(7) =) a;exp(—s;7). (9)
i—1

The unknown coeflicients s; are the zeros of the equation

N
I —A = 0, 10
ﬂz::l 1 — s?u? | (10)

The approximate characteristic equation - Eq.(10) - can simply be solved
when A 1s real and positive since we know beforehand in which intervals to
search for the zeros. This 1s not the case when A 1s complex or negative but
if we write Eq.(13) in the polynomial form

N

Y syt =0, (11)

i=1



where

ey = 1Y u?

we may apply the code DZROOTS from Numerical Recipes [23].

(12)



The coeflicients a; are to be found from linear algebraic system of equations

—u7l, j=1.2....N. (13)

J

o 1 — Sill;

This system may be solved e.g. using algorithms ZGECO and ZGESL from

I'INPACK



h(t, 1) =1+ /Tm O(t)exp(—(t —7)/p)dt,

g(T, 1) = exp(—7/p) + /DT O(t) exp(—(7 —1t)/p)dt.

In our approximation these functions take

N
h(T, ) =1+ p)_
i=1

on the form

a; exp (—s;7)
I+ s;pu

(—s¢7) = exp (=7/p)]

N

;| exp
g(T, 1) =exp(—7/p) + )u,z
i=1

I — s

(16)

(17)



4. The planetary problem

Sobolev has shown that for the planetary problem the source function

takes the form [10]

1

B(r) = iAFH(pg) [exp (—7/po) + []T O(t)exp (—(7 — t)/ﬂ-g)(it}, (24)

or taking into account Eq.(15) we find that

B(r) = TAFH (10)a(r. o). (25)



Using our auxiliary functions these formulas can be simplified

H(u
1(r =) = PP o) () 1) (28)
CH(u

4 po—p



5. The Milne problem

A 1+ kK
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Garcia and Siewert |22] have defined the following parameters

T A2+ A2
= _ 30
=557 (30)
w =exp(—M7/A2). (31)
and
l—w
— _ 32
: l+w (32)
If now
v¢ > 1 (33)

the characteristic equation (6) has two zeros in the complex plane outside
the slit |[—1. 1] but if
~ < 1 (34

there are no zeros on the complex plane.



The case with Ay = 1 and Ay = 0 - the conservative case - 1s well stud-

1ed and the source function in that case 1s expressed as
B(t) = V3[r + ¢(7)], (36)

where ¢(7) 1s the Hopf function. In our approximation this function may be

written as
1 N

¢(7) = =1+ a;si (1 —e™T)]. (37)



The Hopt function at mfinity has played an important role in the radiative
transfer and 1t 1s called the linear extrapolation distance. Placzek and Seidel
23] have found the formula for ¢(co) in the form

6 1 [/
glo0) = += [ (

T 7w J0

3 1
2

)d:r. (38)

T 1 —axcotax

The author has used this formula together with be-language to find that [24]

q(co) = 0.71044608959876307273252414169915367199320133395878523909280).



For the conservative case the intensities are

I(7,—p) = V3[r + q(7)] + h(7, 1) + 1.

I(7. 1) = V3[1 +q(7)] — g(7. 1)

(39)

(40)



B(r) = H(l_)e*” — h(r, 1_) +1. (42)

In this case the mtensities are

1
T 1 — kp

[(T,p) = 1 jﬁ}u H(1/r)e" —h(7.1/k) 4+ 1 — g7, )] (44)

H(1/r)e" — h(1,1/r) + h(7, p1)]. (43)
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Fig.1. The real part of the source function for the planetary problem as

a function of Ay and 7 (g
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Fig.2. The imaginary part of the source function for the planetary prob-

lem as a function of Ay and 7 (g = 0.5, Ay =4).
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Fig.3. The real part of the source function for the planetary problem as

1),

1.0, \

a function of Ay and 7 (pq
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Fig.4. The imaginary part of the source function for the planetary prob-

lem as a function of Ay and 7 (g = 1.0, Ay =4).
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Fig.5. The real part of the source function for the Milne problem as a

function of 7 (1 - A =124+04:, 2-A=16+04:. 3-A=20+0.42. 4 -

A=18+0.6i. 5- =24+ 0.67).
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Fig.6. The imaginary part of the source function for the Milne problem

as a function of 7 (the key is the same as in Fig.3).



Tanu vastupidavuse eest!
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